

R&S[®]SFU broadcast test system, R&S[®]SFE broadcast tester, R&S[®]SFE100 test transmitter

ANSI/SCTE 40 Conformance Testing Using the R&S[®]SFU, R&S[®]SFE and R&S[®]SFE100

Application Note

The Society of Cable Telecommunications Engineers (SCTE) defined the ANSI/SCTE 40 specification: Digital Cable Network Interface Standard. ANSI/SCTE 40 tests are designed to test conformance of set-top boxes and other cable receiving equipment to ensure that they will operate correctly when installed in a cable system. The tests are a combination of noise (AWGN and phase noise), AM hum, micro-reflections, digital and analog adjacent channels, and other discrete interferences. These impairments are found on most cable systems to some degree. Rohde & Schwarz provides set-top box manufacturers with an easy solution to perform conformance testing in line with ANSI/SCTE 40 by using the R&S[®]SFU broadcast test system and the R&S[®]SFE100 broadcast tester. The R&S[®]SFU is able to perform most of the test procedures in one unit. Furthermore, additional test transmitters allow the simulation of full channel loading. This Application Note explains the specific test requirements, a possible setup, and the configuration using the R&S[®]SFU/SFE100.

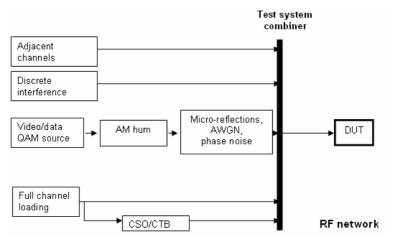
Subject to change - H. Gsoedl, R. Ellis 11.2007 - 7BM68_1E

Contents

1	Introduction	3
2	ANSI/SCTE 40 in Brief	
3	Test Setup for ANSI/SCTE 40 Conformance Testing	6
	Generating CW Full Channel Load	6
	Optioning the R&S [®] Test Transmitters	7
4	Configuring the Main R&S [®] SFU for ANSI/SCTE 40 Testing	8
	Basic Configuration	8
	Phase Noise Generation	9
	AM Hum and Micro-Reflections Using the Fading Option	. 10
	Applying Discrete Interferers	
	Adjacent Channels Using the Arbitrary Generator	11
	Generating Additive White Gaussian Noise (AWGN)	12
5	Configuring R&S [®] SFE/SFE100s for Full Channel Load Simulation	13
6	References	
7	Additional Information	15
8	Ordering Information	16
	R&S [®] SFU	16
	R&S [®] SFE	
	R&S [®] SFE100	18

1 Introduction

Theory and practice – two different worlds. Modulation, transmission, and demodulation of signals are simple tasks in theory. But in practice, errors and inaccuracies occur in each of these steps. In order to ensure that the consumer is able to receive a television service properly under these non-perfect conditions, set-top boxes must be designed to cope with such conditions.


The Society of Cable Telecommunications Engineers (SCTE) defined the ANSI/SCTE 40 specification: Digital Cable Network Interface Standard. ANSI/SCTE 40 tests are designed to test conformance of set-top boxes and other cable receiving equipment to ensure that they will operate correctly when installed in a cable system. The tests are a combination of noise (AWGN and phase noise), AM hum, micro-reflections, digital and analog adjacent channels, and other discrete interferences. These impairments are found to some degree on most cable systems.

Rohde & Schwarz provides set-top box manufacturers with an easy solution to perform conformance testing in line with ANSI/SCTE 40 by using the R&S[®]SFU and R&S[®]SFE/SFE100. The R&S[®]SFU is able to perform most of the test procedures in one unit. Furthermore, additional test transmitters allow the simulation of full channel loading.

This Application Note explains the specific test requirements, a possible setup, and the configuration using the R&S[®]SFU/SFE/SFE100.

2 ANSI/SCTE 40 in Brief

The ANSI/SCTE 40 test is designed to test the receiving equipment in a worst case scenario; therefore, the impairments are required to be simultaneously present during the test. The test schematic looks as follows:

Impairments	Description	Schematic
Additive white Gaussian noise (AWGN)	27 dB C/(N+I) for 64 QAM 33 dB C/(N+I) for 256 QAM	Detect: RMS Ref:-16 dBm Trace: CI/UP BU: 3 HHz UBU: 3 HHz UBU: 3 HHz SUT: 100 ms -26 -36 -36 -55 -55 -56 -76 -106 Center: 600 HHz TRACE TRACE-SIDUAR DETECTOR TRACE
Phase noise	-88 dBc / Hz at 10 kHz offset from channel carrier frequency	
Micro-reflections	-10 dB @ 0.5 us -15 dB @ 1.0 us -20 dB @ 1.5 us -30 dB @ 4.5 us	Detect: RMS Trig: Free RBU: 100 kHz Ref: -6 dBn Trace: CI/Ur UBU; 100 kHz Att: 20 dB SUT: 100 ms -16 SUT: 100 ms -36 -66 -76 CENTER: 549 MHz -86 -96 -96 CENTER: 549 MHz Conter: 549 MHz -C: Span: 20 HHz CENTER: S49 MHz CFREQ FREQ FREQ FREQ FREQ
AM hum	3 %	A SUMP M SUMMe CH 2 ANNO C

The impairments are defined as follows:

Adjacent channels	Analog: Modulation depth = 87.5 %, audio/video -10 dB.	Detect: Auto Pk Teig: Free RBW: 300 kHz Ref: -7 dBn Teace: Ci/Ue UBW: 300 kHz SUT: 100 ms -17 -27 -37 -47 -57 -67 -57 -67 -57 -67 -77 -77 Center: 600 MHz - 32 Center: 600 MHz LINET DISPLAY
	 Digital: 64 QAM: symbol rate = 5.056931 MHz, Nyquist filter alpha = 18 %. 256 QAM: symbol rate = 5.360537 MHz, Nyquist filter alpha = 12 %. 	Detect: Auto Pk Trig: Free RBW: 300 kHz Ref: -4 dBm Trace: Ci/Ur UBW: 300 kHz -14 -24 -34 -34 -54 -54 -54 -54 -54 -54 -54 -54 -54 -5
Channel loading	Continuous wave (CW) at 6 MHz spacing on every relevant channel. Adjusted till intermodulation products in the useful channel reach -53 dBc.	Detect: Auto Pk Trig: Free RBW: 1 MHz Ref: -4 dBm Trace: CI/Ur UBU: 1 MHz Att: 20 dB SWI: 1 00 ms -14 -24 -34 -34 -44 -54 -54 -54 -54 -54 -54 -54 -54 -5
Discrete interferer	Continuous wave (CW) signal at center frequency with –53 dBc.	Detect: Auto Pk Trig: Free RBW: 300 kHz Ref: -4 dBm Trace: CI/Ur UBU: 300 kHz -14 -24 -34 -34 -54 -54 -54 Center: 600 MHz -32 RACE TRACE SHOW DETECTOR TRACE MODE MEMORY MEMORY DETECTOR TRACE

3 Test Setup for ANSI/SCTE 40 Conformance Testing

As we have seen in chapter 2, ANSI/SCTE 40 conformance testing requires the modulated useful signal as well as all impairments to be present at the same time. A possible setup of the complete test scenario can look as follows:

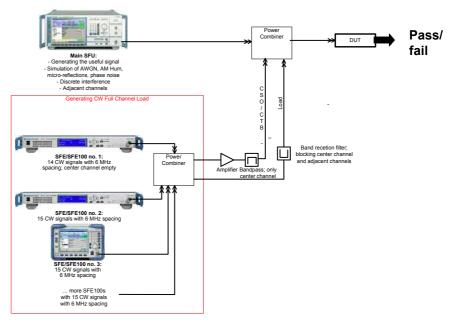
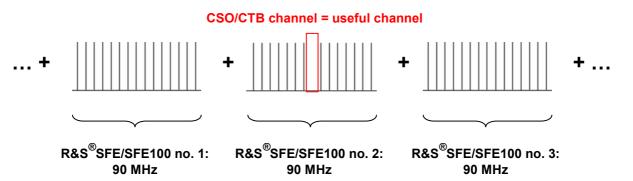


Fig. 2: ANSI/SCTE 40 Test Setup

Whether a DUT passes the test could be determined by subjective pass/fail criteria or alternatively bit error rate measurement. For more information on how to perform bit error measurements using the R&S[®]SFU, please refer to [2].


The "main R&S[®]SFU" generates the useful J.83B signal. Furthermore, AWGN, AM hum, micro-reflections, phase noise, adjacent channel, as well as discrete interferers can be simulated in this unit.

Generating CW Full Channel Load

As we know from section two of this document, full channel loading as well as CSO/CTB intermodulation products need to be added to the outgoing signal. For simulation, it is sufficient to have CW signals at the channel center frequencies of the TV bands as replacement for the actual TV signals.

The R&S[®]SFE/SFE100 has an IQ output bandwidth of 100 MHz. In order to create full channel loading for all relevant TV bands, multiple R&S[®]SFE/SFE100s are required. The waveforms contain 14 or 15 CW signals (90 MHz bandwidth used).

For the generation of the CSO/CTB intermodulation products, the channel under test (center channel) needs to be empty. Therefore, the following scheme to generate the CW carriers is used:

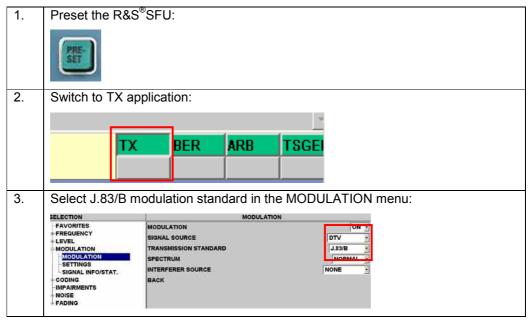
The full channel load needs to be passed through an amplifier in order to generate the second- or third-order intermodulation products in the useful channel. Afterwards bandpass filtering is applied to the center channel, in order to only have the intermodulation products in the output spectrum.

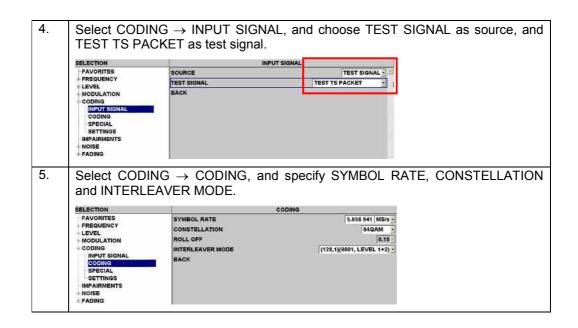
From the channel load combiner, a second path is added to the signal coming from the main R&S[®]SFU. This signal is band-rejection-filtered on the three center channels (adjacent channel and useful channel are not overlaid with CW signals), as there the useful signals as well as the adjacent channels are present while testing.

Optioning the R&S[®] Test Transmitters

The main R&S[®]SFU unit generating the useful signals and all other impairments except CSO/CTB and full channel load should be configured as follows to allow conformance testing in line with ANSI/SCTE 40:

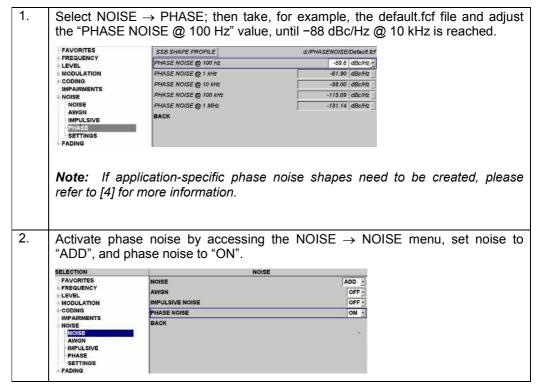
			D	evic	æо	ptio	ns			
Impairments	TS generator (R&SESTU-M20) or TRP Player (R& M22)	J.83Booter (R&SESTUKS)	Phase noise (R&SESFUH41)	Noise generator AWGN (R&SESFU-K40)	Multinaise use (R&SBSFUK43)	Fading simulator, 20 paths (R&S®SFU-B30)	Interferer management (R&S&SFUK37)	Arbitrary generator (R&S®SFUH35)	Namay extension (P&SE3FU-B3)	Cable interferer (R&S®SFU-K356)
Discrete interference	Х	Х								
AWGN	Х	Х		Х	Х					
Phase noise	Х	Х	Х		Х					
Mcro-relections	Х	Х				Х				
AMhum	Х	Х				Х				
Adjacent channels	Х	Х					X	Х	Х	Х


To generate the full channel load by means of R&S[®]SFE/SFE100s, the following R&S[®]SFE/SFE100 configuration is required in each case:


Impairments	Arbitrary generator (R&S®SFE/SFE100-K35)	× Memory extension (R&S®SFE/SFE100-B3)	X Cable interferer (R&S®SFU-K356)
Full channel load	Х	Х	Х
CSO/CTB	Х	Х	Х

4 Configuring the Main R&S[®]SFU for ANSI/SCTE 40 Testing

Basic Configuration

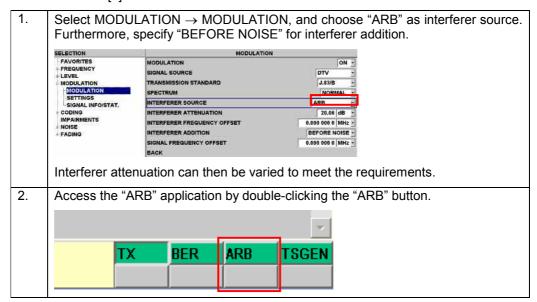

This "Basic Configuration" section explains which fundamental configurations are necessary to perform ANSI/SCTE 40 testing using bit error ratio (BER) measurement as deviation criterion.

Phase Noise Generation

As described in the previous chapter, it is required to have -88 dBc/Hz @ 10 kHz offset. Proceed as follows to configure the main R&S[®]SFU:

AM Hum and Micro-Reflections Using the Fading Option

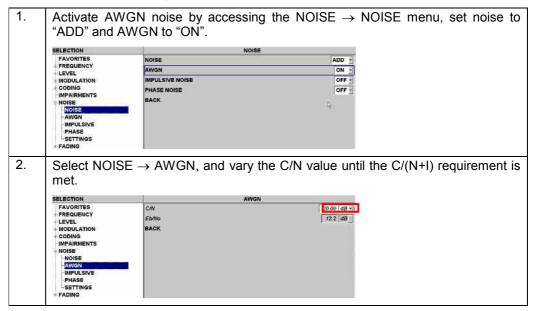
2-1 2- ON OI STATIC STA	1-5	configur	OFF	LED OUPLED %	ED UNIT IRENCE MON DOPPLER SHIF AL CONSTANT COUP IDARD DEVIATION C IRE RFCHANGES < 5 P. MODE AL DEDICATED TO UNIT	REGUENCY REFE EVEL COM IODULATION COM JODING LOCA MPAIRMENTS STAN JOISE STAN JOING IGNO FADING HOP PROFILE FIDING
ON OI	1-5	OFF OFF OFF OFF COFF COFF	OFF	LED OUPLED %	MON DOPPLER SHIF AL CONSTANT COUP IDARD DEVIATION C IRE RFCHANGES < 5 P. MODE	EVEL REFE IODULATION COMM ODINA LOCA MPAIRMENTS STAN ADING IGNO FADING HOPP PROFILE PROFILE
ON OI	1-5	Configur	R	LED OUPLED %	AL CONSTANT COUP IDARD DEVIATION C RE RFCHANGES < 5 P. MODE	ODING LOCA MPAIRMENTS STAN ADING IGNO FADING HOPF PROFILE CIDA
ON OI	1-5	OFF OFF F OUTPUT : CONfigur	R	OUPLED %	IDARD DEVIATION C RERFCHANGES < 5 P. MODE	MPAIRMENTS STAN IOISE STAN ADING IGNO FADING HOPE PROFILE STAN
ON OI	1-5	off Fourput Configur	R	%	RE RFCHANGES < 5 P. MODE	ADING IGNO FADING HOPP -PROFILE COM
ON OI	1-5	configur	R		P. MODE	FADING HOPF
ON OI	1-5	configur	1 000 0		AL DEDICATED TO	
ON OI	1-5		following			SETTINGS
ON OI				and enter	PROFILE,	o to FADING \rightarrow F
		1-4	1-3	1-2	1-1	
STATIC STA	ON	ON	ON	ON	ON	STATE
	STATIC	STATIC	PURE	PURE	PURE	PROFILE
PATH PA	PATH	PATH	DOPPLER	DOPPLER	DOPPLER	
20 3	15	10	36.47	0	36.47	PATH LOSS (Db)
0 0	0	0	0	0	0	BASIC DELAY
1.5µ 4.5	1.0µ	.5μ	1	0	0	ADDIT. DELAY
1.5 4.	1.0	0.50	1	0	0	RESULTING DELAY
0 0	0	0	0	0	0	POWER RATIO (Db)
0.0 0.	0.0	0.0	0.0	0.0	0.0	CONST PHASE (Deg)
0 0	0	0	131.16	93.69	56.21	SPEED
0 0	0	0	1.0	1.0	1.0	FREQ RATIO
0 0	0	0	175.00	125.00	75	RES DOPPLER
		-		~	-	
200.00 200	200.00	200.00	200.00	200.00	200.00	LOCAL CONSTANT (M)
0 0	0	0	0	0	0	STANDARD DEV. (Db)
0 0FF 0 0.00 0FF 200.0	0 OFF 0 0.00 OFF 200.00	0 OFF 0 0.00 OFF 200.00	175.00 OFF 0 0.00 OFF 200.00	125.00 OFF 0 0.00 OFF 200.00	75 OFF 0 0.00 OFF 200.00	RES DOPPLER SHIFT(Hz) CORRECTION PATH COEFFICIENT [%] PHASE (DEG) .OG NORMAL STATE LOCAL CONSTANT (M)


Applying Discrete Interferers

The discrete interferer in this context means an unmodulated carrier, also referred to as continuous wave (CW). In order to apply discrete interference by means of the R&S[®]SFU the impairments can be used.

SELECTION	IMPAIRMENTS	6	-						
FAVORITES + FREQUENCY	MODULATOR IMPAIRMENTS		ON .						
LEVEL	IOFFSET	0.0							
+ MODULATION + CODING	QOFFSET	0.0	description of the local division of the loc						
IMPAIRMENTS	QUADRATURE ERROR	and the second se	Deg -						
NOISE	AMPLITUDE IMBALANCE	0.0	and the second se						
# FADING	BASEBAND IMPAIRMENTS		OFF -						
The relative R&S [®] SFU is	output power of CW in rel computed as follows:	ation to the	indic	ate	d out	out po	ower	of th	e
a = 20 * log ((I-Impairment) + PEP (dBc)								

Adjacent Channels Using the Arbitrary Generator


Upper and lower adjacent channels are generated using the arbitrary generator. With the R&S[®]SFU-K37 interferer management option, it is possible to add the interferer signals to the wanted signal. Please refer also to [3] for more details.

SELECTION	ARE
FAVORITES	ARB OFF -
CLOCK	LOAD WAVEF/RM d:/ARB/WAVEFORMS/sine_test_signal.wv BACK
TRIGGER	
TESTSIGN	AL
Select	one of the following three waveforms of the cable interferer library:
•	SCTE 2CH 64QAM.WV: Two digital adjacent channels with 64 Q/
•	modulation.
	mouulation.
•	SCTE_2CH_256QAM.WV: Two digital adjacent channels with 256 Q/
-	modulation.
•	SCTE_2CH_NTSC.WV: Two analog adjacent channels with NTS

Generating Additive White Gaussian Noise (AWGN)

A specific C/(N+I) needs to be specified, when all other interferences such as CSO, CTB, and discrete interferers are present. This can be done using the AWGN option of the R&S[®]SFU:

5 Configuring R&S[®]SFE/SFE100s for Full Channel Load Simulation

The R&S[®]SFU-K356 cable interferer library provides two different channel load waveforms which can be generated using the arbitrary waveform generator:

- FullCWLoad.wv: Containing 15 CW signals in 6 MHz spacing.
- FullCWLoad_NoCenter.wv: Containing 14 CW signals in 6 MHz spacing. Center channel empty.

Proceed as follows to output the desired spectrum (besides the Windows GUI, also the control via front display of the R&S[®]SFE100 is shown):

1.	Preset the R&S [®] SFE/SFE100
2.	Switch to ARB application:
	TX ARB TSGEN OF MARKER
3.	Access ARB \rightarrow ARB, and click "LOAD WAVEFORM":
	SELECTION ARB FAVORITES LOAD d:/ARB/WAVEFORMS/mccw.wv ARB CLOCK FREQ. 78.000 000 MHz - TRIGGER BACK
	or
	ARB
	Select one of the above waveforms.
4.	Switch to TX application:
5.	Go to MODULATION → MODULATION, and select "ARB" as signal source. SELECTION FAVORITES MODULATION FAROULATION SECTRUM MODULATION BACK Or MODULATION SIGNAL SOURCE ARB ARB ARB ARB ARB ARB ARB ARB

•			
6.	Select FREQ	JENCY \rightarrow FREQUEN	CY and enter the desired center frequency.
	SELECTION	FREQU	ENCY
	FAVORITES	FREQUENCY	1 000.000 000 MHz -
	FREQUENCY	CHANNEL	
	FREQUENCY	BACK	
	SETTINGS	DACK	
	or		
	F	REQUENCY	
	FREQUENCY	1 000,000 000 MHz	
	CHANNEL		
	BACK	Ĩ	
	Note: The	frequency setting ne	eds to be incremented or decremented in
	00 MHz stops	on the different $P8 S^{\mathbb{R}}$	SFE/SFE100s for continuous channel load.
	90 Mi 12 Sieps	on the unerent NaS	
7.	Select LEVEL	\rightarrow LEVEL. and adjust	the output power as desired:
	Contraction and an excellent		
	SELECTION	u	VEL
	FAVORITES	LEVEL	-10.0 dBm 🕶
	+ FREQUENCY	PEP	-6.1 dBm 🗹
	-LEVEL	RF	ON ·
	SETTINGS	USER LIMIT	30.0 dBm -
	or		
		LEVEL	
	LEVEL	-10.0 dBm 🔽 🔺	
	PEP	-6.1 dBm 🔽 🛄	
	RF	ON 🗨 🛡	

6 References

- [1] Society of Cable Telecommunications Engineers (Ed.) (2004). American National Standard, ANSI/SCTE 40 2004, Digital Cable Network Interface Standard.
- [2] Tan, C K (2005). Application Note 7BM51. Measuring Bit Error Rate using the R&S[®]SFU-K60 Option. Munich: Rohde & Schwarz GmbH & Co. KG website: <u>http://www.rohde-schwarz.com</u>.
- [3] Tan, C K (2005). Application Note 7BM50. Generating Interference Signals using the R&S[®]SFU-K37 Option. Munich: Rohde & Schwarz GmbH & Co. KG website: <u>http://www.rohde-schwarz.com</u>.
- [4] Gsoedl, Harald (2006). Application Note 7BM63. Phase Noise Profile Creator for the R&S[®]SFU. Munich: Rohde & Schwarz GmbH & Co. KG website: <u>http://www.rohde-schwarz.com</u>.

7 Additional Information

Our Application Notes are regularly revised and updated. Check for any changes at <u>http://www.rohde-schwarz.com</u>.

Please send any comments or suggestions about this Application Note to <u>Broadcasting-TM-Applications@rsd.rohde-schwarz.com</u>

8 Ordering Information

R&S[®]SFU

Туре	Designation	Order no.
R&S SFU	-	
	Broadcast Test System	2110.2500.02
R&S SFU-B1	Coder Extension 1	2110.7424.02
R&S SFU-B10	Coder Extension 10	2110.7747.02
R&S SFU-B11	ETI Input/Output	2110.7553.03
R&S SFU-B30	Fading Simulator	2110.7530.02
R&S SFU-B31	Fading Simulator Extension to 40 Paths	2110.7547.02
R&S SFU-B4	Memory Extension 2	2110.7453.02
R&S SFU-B5	User I/O	2110.7460.02
R&S SFU-B6	Additional Hard Disk	2110.7501.02/03
R&S SFU-B90	High Power and Overvoltage Protection	2110.8008.02
R&S SFU-K1	DVB-T/H Coder	2110.7301.02
R&S SFU-K10	MediaFLO Coder	2110.7524.02
R&S SFU-K108	AMC Coder	only on request
	T-DMB/DAB Coder	2110.7518.02
R&S SFU-K120		2110.7760.02
	ATV Standard B/G Coder	2110.8050.02
	ATV Standard D/K Coder	2110.8037.02
R&S SFU-K192		2110.8037.02
	ATV Standard M/N Coder	2110.8066.02
	ATV Standard MiN Coder ATV Standard L Coder	2110.8072.02
	Multi ATV Predefined	2110.8089.02
	DVB-C Coder	2110.7324.02
R&S SFU-K20	TS Generator	2110.7476.02
	TS Recorder	2110.7482.02
	TRP Player	2110.7499.02
	T-DMB/DAB Streams	2110.4348.02
	Video Generator	2110.7799.02
R&S SFU-K3	DVB-S/DSNG Coder	2110.7330.02
R&S SFU-K30	Enhanced Fading	2110.7560.02
	DAB Gaussian Fading	2110.7630.02
	ARB Generator	2110.7601.02
	T-DMB/DAB Waveforms	2110.4277.02
	DVB-H Waveforms	2110.4425.02
	DRM Waveforms	2110.4554.02
R&S SFU-K354		2110.4690.02
	Cable Interferers	2110.3212.02
R&S SFU-K4	ATSC/8VSB Coder	2110.7353.02
	Interferer Management	2110.7647.02
R&S SFU-K40	Noise AWGN	2110.7653.02
	Phase Noise	
	Impulsive Noise	2110.7660.02 2110.7676.02
R&S SFU-K42 R&S SFU-K43	Multinoise Use	2110.7676.02
		0440 7000 00
R&S SEU-K5	J.83/B Coder	2110.7360.02
R&S SFU-K6	ISDB-T Coder	2110.7376.02
R&S SFU-K60	BER Measurements	2110.7782.02
R&S SFU-K7	DMB-T Coder	2110.7382.02
R&S SFU-K8	DVB-S2 Coder	2110.7399.02
R&S SFU-K80	Extended I/Q	2110.7953.02
R&S SFU-K81	Realtime Disabled	2110.7960.02
R&S SFU-K82	Realtime Enabled	2110.7976.02
R&S SFU-K9	DIRECTV	2110.7401.02
R&S SFU-U43	Upgrade Kit for R&S SFU-K43	2110.7699.02
R&S DV-DVBH	DVB-H Stream Library	2085.8704.02
R&S DV-H264	H.264 Stream Library	2085.7650.02
R&S DV-HDTV	HDTV Sequences	2085.7650.02
	ISDB-T Stream Library	2085.9146.02
R&S DV-TCM	Test Card M Streams	2085.7708.02
140 07-1011	rea varu m sucaris	2000.1100.02

R&S[®]SFE

Туре	Designation	Order no.
R&S SFE	Broadcast Tester	2112.4300.02
R&S SFE-K1	DVB-T/H	2113.4010.02
R&S SFE-K2	DVB-C	2113.4032.02
R&S SFE-K3	DVB-S/DSNG	2113.4055.02
R&S SFE-K4	ATSC/8VSB	2113.4078.02
R&S SFE-K5	J.83/B	2113.4090.02
R&S SFE-K6	ISDB-T/ISDB-Tsb	2113.4110.02
R&S SFE-K8	DVB-S2	2113.4132.02
R&S SFE-K9	DirecTV	2113.4155.02
R&S SFE-K10	MediaFLO™	2113.4178.02
R&S SFE-K11	T-DMB/DAB	2113.4190.02
R&S SFE-K12	DTMB	2113.4210.02
R&S SFE-K190	ATV-B/G	2113.4655.02
R&S SFE-K191	ATV-D/K	2113.4678.02
R&S SFE-K192	ATV-I	2113.4690.02
R&S SFE-K193	ATV-M/N	2113.4710.02
R&S SFE-K194	ATV-L	2113.4732.02
R&S SFE-K195	ATV Multistandard	2113.4755.02
R&S SFE-K20	TS Generator, includes SDTV stream library	2113.4878.02
R&S DV-DVBH	DVB-H Stream Library	2085.8704.02
R&S DV-TCM	Test Card M-Streams	2085.7708.02
R&S DV-HDTV	HDTV Sequences	2085.7650.02
R&S DV-H264	H.264 Stream Library	2085.9052.02
R&S DV-ISDBT	ISDB-T Stream Library	2085.9146.02
R&S SFU-K221	T-DMB/DAB Streams	2113.4348.02
R&S SFE-K23	Video Generator	2113.4890.02
R&S ATV Video	ATV Video Signals	2110.4831.02
R&S SFE-K22	TRP Player	2113.5274.02
R&S SFE-K35	ARB Generator model	2113.4932.02
R&S SFU-K351	T-DMB/DAB Waveforms	2110.4277.02
R&S SFU-K352	DVB-H Waveforms	2110.4425.02
R&S SFU-K353	DRM Waveforms	2110.4554.02
R&S SFU-K354	DTV Interferer Waveforms	2110.4690.02
R&S SFU-K355	MediaFLO™ Waveforms	2110.2974.02
R&S SFU-K356	Cable Interferer Waveforms	2110.3212.02
R&S SFE-K40	AWGN Generator	2113.4910.02
R&S SFE-K60	BER Measurement	2113.5151.02
R&S SFE-K80	Digital I/Q Input	2113.5251.02
R&S SFE-B3	Memory Extension	2112.4500.02

R&S[®]SFE100

Туре	Designation	Order no.
R&S SFE100	Test Transmitter	2112.4100.02/2112.4100.03
R&S SFE100-K1	DVB-T/H	2113.4003.02
R&S SFE100-K2	DVB-C	2113.4026.02
R&S SFE100-K3	DVB-S/DSNG	2113.4049.02
R&S SFE100-K4	ATSC/8VSB	2113.4061.02
R&S SFE100-K5	J.83/B	2113.4084.02
R&S SFE100-K6	ISDB-T/ISDB-Tsb	2113.4103.02
R&S SFE100-K8	DVB-S2	2113.4126.02
R&S SFE100-K9	DirecTV	2113.4149.02
R&S SFE100-K10	MediaFLO™	2113.4161.02
R&S SFE100-K11	T-DMB/DAB	2113.4184.02
R&S SFE100-K12	DTMB	2113.4203.02
R&S SFE100-K190	ATV-B/G	2113.4649.02
R&S SFE100-K191	ATV-D/K	2113.4661.02
R&S SFE100-K192	ATV-I	2113.4684.02
R&S SFE100-K193	ATV-M/N	2113.4703.02
R&S SFE100-K194	ATV-L	2113.4726.02
R&S SFE100-K20	TS Generator, includes SDTV stream library	2113.4861.02
R&S DV-DVBH	DVB-H Stream Library	2085.8704.02
R&S DV-TCM	Test Card M-Streams	2085.7708.02
R&S DV-HDTV	HDTV Sequences	2085.7650.02
R&S DV-H264	H.264 Stream Library	2085.9052.02
R&S DV-ISDBT	ISDB-T Stream Library	2085.9146.02
R&S SFU-K221	T-DMB/DAB Streams	2113.4348.02
R&S SFE100-K22	TRP Player	2113.5268.02
R&S SFE100-K23	Video Generator	2113.4884.02
R&S SFE100-K35	ARB Generator model	2113.4926.02
R&S SFU-K351	T-DMB/DAB Waveforms	2110.4277.02
R&S SFU-K352	DVB-H Waveforms	2110.4425.02
R&S SFU-K353	DRM Waveforms	2110.4554.02
R&S SFU-K354	DTV Interferer Waveforms	2110.4690.02
R&S SFU-K355	MediaFLO™ Waveforms	2110.2974.02
R&S SFU-K356	Cable Interferer Waveforms	2110.3212.02
R&S SFE100-K80	Extended I/Q Input	2113.5245.02
R&S SFE100-B90	Power Amplifier	2112.4900.02
R&S SFE100-B3	Memory Extension	2112.4400.02

If you want to know more about Rohde & Schwarz products, check out our website or contact our local sales representative.

ROHDE & SCHWARZ GmbH & Co. KG · Mühldorfstraße 15 · D-81671 München · Postfach 80 14 69 · D-81614 München · Tel (089) 4129 -0 · Fax (089) 4129 - 13777 · Internet: <u>http://www.rohde-schwarz.com</u>

This Application Note and the supplied programs may only be used subject to the conditions of use set forth in the download area of the Rohde & Schwarz website.